Chemical Calculations of Volumetric Titrations.

Chemical calculations which associate with titration process in volumetric analysis are very significant since they illustrate the idea about the accuracy of titration data which refer to the precision of measurements that lead to accurate results.

The reaction in volumetric analysis should be rapid and complete. The reactions are expressed in balanced equations and from these reactions one can know the ratio of reactants since they involve equivalents of the reactants at equivalence point.

Normal concentration gives simple and rapid calculations because they involve equivalent amounts of the reactants.

Molar concentrations require some attention and recognition.

For example, if NaOH solution is titrated with HCl solution, there is no difference in using normality or molarity because the reaction is performed in 1:1 ratio between NaOH and HCl

But the case is different in titration of Na₂CO₃ solution with HCl solution.

$$Na_2CO_3 + 2HCI \longrightarrow 2NaCI + CO_2 + H_2O$$

Where two moles of HCl react with one mole of Na₂CO₃. This means that the strength of Na₂CO₃ is twice of HCl. If the molar concentration is used, a precaution should be given to the factor 2 in HCl.

$$(\mathbf{V} \times \mathbf{M})$$
 = $(\mathbf{V} \times \mathbf{M})$ HC

This equality is incorrect if molar concentration is used. Therefore, a factor of 2 should be used at the left side of the above reaction in order to express correctly the reaction between Na₂CO₃ and HCl.

$$2(\mathbf{V} \times \mathbf{M}) = (\mathbf{V} \times \mathbf{M})$$

$$\mathbf{N} \mathbf{a}_2 \mathbf{CO}_3 \qquad \mathbf{HC}$$

But if the normal concentration is employed for both solutions, the following reaction is correct because the reaction is performed on the basis of equivalents or milliequivalents.

$$(\mathbf{V} \times \mathbf{N}) = (\mathbf{V} \times \mathbf{N})$$
 $\mathbf{N} \mathbf{a}_2 \mathbf{C} \mathbf{O}_3 \qquad \mathbf{H} \mathbf{C} \mathbf{I}$

The same treatment is considered in precipitation, oxidation-reduction and complex formation titrations.

Calculations of acid-base titrations or neutralization titrations (one of the products is water).

Ex(1): Calculate the weight of H_2SO_4 in 5 litres if 25 ml of this solution requires 22.5 ml of 0.095 N KOH.

The solution:

Eq. wt. of
$$H_2SO_4 = \frac{2 \times 1 + 32 + 4 \times 16}{2} = \frac{98}{2} = 49$$

No. of megts of KOH = No. of megts of H_2SO_4

$$(22.5 \times 0.095) = (N \times 25)$$

$$KOH \qquad H_2SO_4$$

$$N_{H_2SO_4} = \frac{22.5 \times 0.095}{25} = 0.0855 \text{ eq/lit}$$

$$Wt. \text{ of } H_2SO_4 \text{ in 5 litres} = N \times \text{ eq. wt.} \times \frac{5}{1}$$

$$= 0.0855 \times 49 \times 5 = 20.9475 \text{ g}$$

Ex(2): A solution of Na₂CO₃ contains 795 mg per litre of solution. Calculate the normality of this solution. What is the volume of H₂SO₄ of 0.1 N that equivalent to 10 ml of Na₂CO₃ solution.

The solution:

$$N = \frac{0.795}{53} = 0.015 \text{ meq/ml normality of Na}_{2}CO_{3}$$

$$(V \times 0.1) = (0.015 \times 10)$$

$$_{\text{Na}_{2}CO_{3}}$$

$$V_{H_2SO_4} = \frac{0.015 \times 10}{0.1}$$
 =1.5 ml H_2SO_4 required to equivalent10 ml of 0.1 N Na_2CO_3

30 g of KHC₂O₄.H₂C₂O₄.2H₂O is dissolved in distilled water and Ex(3): completed to litre. 40 ml of this solution is titrated with KOH which required 20 ml. Calculate the normality of KOH.

The solution:

Eq. wt. KHC₂O₄.H₂C₂O₄.2H₂O =
$$\frac{39+3\times1+4\times12+8\times16+2\times18}{3}$$

= $\frac{254}{3}$ =84.67
N of this solution = $\frac{30}{84.67}$ = 0.3543 eq/lit or meq/ml.

meqts of this acidic solution = meqts of KOH
$$(40\times0.3543) = (20\times N) \xrightarrow[\text{KOH}]{} N_{\text{KOH}} = \frac{40\times0.3543}{20} = 0.7086 \text{ meq/ml.}$$

10 ml of vinegar has density of 1.055 g/ml and requires 39.82 ml of 0.225 N of a base to reach equivalence point. Calculate the percentage of acetic acid in vinegar (w/w).

The solution:

Wt. of vinegar sample = volume \times density

$$= 10 \times 1.055 = 10.55 g$$

No. of meqts. of vinegar solution = No. of meqts. of base.

$$0.255 \times 39.82 = {N_{CH_3COOH}} \times {10}$$

$${N_{CH_3COOH}} = \frac{0.255 \times 39.82}{10} = 1.01541 \text{ eq/lit or meq/ml}$$

wt. of acetic acid in vigenar =
$$N \times eq.$$
 wt. $\times \frac{10}{1000}$

Eq.wt of CH₃COOH =
$$\frac{2 \times 12 + 2 \times 16 + 4 \times 1}{1} = \frac{60}{1} = 60$$

= 1.01541× 60 × $\frac{10}{1000}$ \longrightarrow = 0.6092 g

% of CH3COOH in vinegar =
$$\frac{0.6092}{10.55} \times 100 = 5.77$$
 %(w/w)

Ex(5): 0.3542 g of Na₂CO₃ was dissolved in water and titrated with HCl which consumed 30.32 ml of the acid. Calculate the normality of HCl solution.

The solution:

$$Na_2CO_3 + 2HCl \longrightarrow 2NaCl + CO_2 + H_2O$$

1 mol of Na₂CO₃ requires two moles of HCl.

∴ $2 \times No$. of mmols of $Na_2CO_3 = No$. of mmols of HCl.

$$2 \times \frac{0.3542}{106} \times 1000 = M_{HCl} \times 30.32$$

 $M_{HCl} = 2.21 \text{ mol} / \text{lit or mmol} / \text{ml}$

Calculations of precipitation titrations.

In precipitation titrations, one of the products is slightly soluble salt called precipitate.

Ex(1): Calculate the percentage of silver in silver alloy if a solution prepared by dissolving 0.3g of the alloy requires 23.80ml of 0.1N

NH₄SCN. (Ag=108)
$$Ag^+ + SCN^- \longrightarrow AgSCN_{\psi}$$
 white precipitate

The solution:

Ex(2): Find the weight of $BaCl_2$ in 250 ml of solution where 40 ml in excess of 0.102 N AgNO₃ was added to 25 ml of $BaCl_2$. The excess of AgNO₃ solution was titrated with 0.098 N SCN $^-$.

The solution:

BaCl₂ + 2AgNO₃
$$\longrightarrow$$
 Ba(NO₃)₂ + 2AgCl
AgNO₃ + SCN $^ \longrightarrow$ AgSCN + NO₃ $^-$

No. of meqts of AgNO₃ = No. of meqts of SCN $^-$ + No. of meqts of BaCl₂.

$$(0.102 \times 40)$$
 = $(N \times 25)$ + (0.098×15) SCN

$$1.47 + 25 N = 4.08$$

$$N = \frac{2.61}{25} = 0.1044 \text{ meq} / \text{ml normality of BaCl}_2 \text{ solution.}$$

Wt. of BaCl₂ in 250 ml =
$$N_{BaCl_2} \times its eq.$$
 wt. $\times \frac{250}{1000}$

=
$$0.1044 \times 104.17 \times \frac{250}{1000}$$
 = $2.72 \text{ g BaCl}_2 / 250 \text{ ml}$.